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Details
Our method chooses the estimate     with maximum probability given
data   . The probability is given by:

The Poisson likelihood 
of the data given the
estimate and an operator
     that blurs estimates to
produce an image. RL
decon maximizes this
likelihood.

We assign a probability for the
trajectory of each pixel of the
estimate in time according to a
model of photobleaching. We
assume that a single conditional
probability for a pixel at two time
points is binomially distributed.

The binomial distribution is discrete and
challenging to optimize. We use a
continuous approximation to the
binomial distribution:

In the discrete case, a nonincreasing constraint is enforced by the
probability. In the continuous approximation, this constraint doesn’t
always hold. We employ the pool adjacent violators algorithm (PAVA)
as a projection back to the space of feasible estimates.

One iteration
Gradient Project Line Search

We take the gradient
of the log probability.
The gradient of the
Poisson component
can be taken quickly
with FFT convolution.
The temporal part
relies on evaluation of
the special digamma
function.

We take a step in the
gradient direction
and then project the
result using PAVA.
The constraint space
is convex, so all points
between the PAVA
projection and the
current estimate are
feasible.

We do backtracking
line search between
the current estimate
and projection to find
a next estimate that is
likelihood improving.

The algorithm employed here demonstrates proof-of-principle;
alternative implementations are possible. For example, a version based
on just including the nonincreasing constraint can be implemented
using RL with a special PSF.

Examples

True object Images RL decon ST decon Estimate at t=0

When bleached to
sparse labeling, RL
and ST decon can
localize emitters at
later times. ST decon
can propagate that
info to earlier times.

The same algorithm
outperforms RL 
decon on densely
labeled samples as
well. 

RL decon suffers from
overfitting to noise if run
too long. The error plot
to the left shows that
past a certain point more
iterations gives worse
results. A benefit of ST
decon is an effective
regularization. Unlike
other approaches to
regularization, this uses
only the bleaching
probability – a quantity
easily measured – as a 

Tests of synthetic dense 1D object over 1024
random bleaching histories and noise realizations.
Filled regions represent middle 90th percentile;
central line is mean.

Applications and Extensions

Yan Fu, P. W. Winter, R. Rojas, V. Wang,
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Natural application: cases
where you’re already taking
multiple images, like SIM or
sequential multi-angle TIRF 
with photobleaching.
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Including photoactivation opens the
door to analyzing techniques like PALM 
or two-step microscopy – exploiting a
special protein that photoactivates and
excites at the same frequency.

Photobleaching by itself is perhaps
limited, but the larger vision – a unified
analysis algorithm exploiting our
knowledge of photophysics – is
compelling.

blur and noise deconvolve

ST RL

Comparing Fourier
improvement in the
cameraman image for ST
(left) and RL (right), we
see more robust
performance near the
edge of the band, just as
in the 1D case above.
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Objects, images and
estimates from first
time point for 2D
test cases. Layout of
each figure shown
below.

Can one augment deconvolution approaches with knowledge of
photophysics? What gains does this yield?

As a first step toward answering these questions, we developed
spatiotemporal decon (ST), a deconvolution algorithm in the
spirit of RL that includes a model of photobleaching. The
algorithm is to be applied to a time-series of fixed images.

The choice of photobleaching was motivated by perceived
simplicity more than utility. Nevertheless, the performance of ST
suggests the value of this program.

...together.Deconvolution...

Imaging systems give blurry, noisy images of objects. Given a model of both
the blurring and the noise, we can attack the inverse problem of retrieving the
original image from the noisy measurement. A classic, widely-used algorithm
for this deconvolution problem is Richardson-Lucy (RL), an iterative maximum
likelihood approach. 

RL  works without any assumptions about the sample, and is great for
combining information from multiple images. This generality can be both
strength and weakness, though, since information about the sample can greatly
improve our reconstruction ability.

...and photophysics...
Superresolution techniques exploit various special
situations to defeat the Abbe limit. These can be
separated into two broad classes. One set of
methods uses special illuminations to achieve
superresolution. This class includes structured
illumination microscopy (SIM), stimulated emission
depletion (STED), and total internal reflection
microscopy (TIRF). RL is already well suited for
these methods because this information is
straightforward to encode in the imaging model.

Another approach is localization methods like
photo-activated localization microscopy (PALM) or
stochastic optical reconstruction microscopy
(STORM).  These employ peculiarities of the
fluorophores, such as blinking, bleaching, or
photoactivation. These techniques can achieve
sensational results. However, they also require
special purpose analyses that can prove brittle. A
more unified approach that fails gracefully would
have great appeal. We think including fluorophore
behavior in deconvolution is such an approach.

parameter. Intuitively, ST decon can aggregate more data
and get an effectively lower noise floor. A naive, time-
averaged (TA) approach shows similar regularization but
less correctness.

Real space shows
regularization well. For
correctness, It is useful
to consider error in the
Fourier domain. We
consider a metric we call
Fourier improvement 
which compares the
error in the estimate to
the error in the image:

Tests of synthetic dense 1D object at first time
point over 256 random bleaching histories and
noise realizations. Filled regions represent middle
90th percentile; central line is median.

The plot above is of average 1D Fourier improvement at
the first time point over many random bleaching histories
and images. RL drops off with spatial frequency faster than
ST; TA performs substantially worse at low frequencies. 

Line cuts through the
spoke targets show the
reduced ringing of ST
relative to RL. In both the
spoke and cameraman
images, fewer artifacts
are visible in uniform
regions.

1D test cases allow visualization of space
and time behavior easily, but 2D test
cases are better practical examples. (The
algorithm is straightforwardly extensible
to 3D, but long time-series of 3D images
will be impractically large.)

These 2D cases show that the
regularization benefits demonstrated in
1D generalize to more realistic
scenarios.
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